Critical exponent for evolution equations in modulation spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Equations with Critical Exponent

where As3 is the Laplace-Beltrami operator on B' . Let 0* C (0, 7r) be the radius o r B ' , i.e., the geodesic distance of the North pole to OBq The values 0 < 0* < 7r/2 correspond to a spherical cap contained in the Northern hemisphere, 0* -7r/2 corresponds to B ~ being the Northern hemisphere and the values rr/2 < 0* < ~c correspond to a spherical cap which covers the Northern hemisphere. Fin...

متن کامل

Critical Exponent for Semilinear Wave Equations with Space-Dependent Potential

We study the balance between the effect of spatial inhomogeneity of the potential in the dissipative term and the focusing nonlinearity. Sharp critical exponent results will be presented in the case of slow decaying potential.

متن کامل

Dichotomies for evolution equations in Banach spaces

The aim of this paper is to emphasize various concepts of dichotomies for evolution equations in Banach spaces, due to the important role they play in the approach of stable, instable and central manifolds. The asymptotic properties of the solutions of the evolution equations are studied by means of the asymptotic behaviors for skew-evolution semiflows. MSC: 34D05, 34D09, 93D20

متن کامل

Concentration Phenomena for Fourth-order Elliptic Equations with Critical Exponent

We consider the nonlinear equation ∆u = u n+4 n−4 − εu with u > 0 in Ω and u = ∆u = 0 on ∂Ω. Where Ω is a smooth bounded domain in Rn, n ≥ 9, and ε is a small positive parameter. We study the existence of solutions which concentrate around one or two points of Ω. We show that this problem has no solutions that concentrate around a point of Ω as ε approaches 0. In contrast to this, we construct ...

متن کامل

Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces

This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2016

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2016.04.051